Control of Discrete Systems

ENSICA

Yves Briere ISAE

Overview

Prerequisites:

Automatique ENSICA 1A et 2A
Traitement numérique du signal ENSICA 1A
(Control and signal processing, basics)
Tools:
Matlab / Simulink

References:

- «Commande des systèmes », I. D. Landau, Edition Lavoisier 2002.

Planning

22 slots of 1h15

Overview
Discrete signals and systems
Sampling continuous systems
Identification of discrete systems
Closed loop systems
Control methods
Control by computer

I. Introduction

II. Discrete signals and systems
Signal processing / Control
\rightarrow Signal processing gives tools to describe and filter signals \rightarrow Control theory use these tools to deal with closed loop systems \rightarrow More generally, control theory deal with : \rightarrow discrete state system analysis and control (Petri nets, etc...) \rightarrow Complex systems, UML, etc...

II. Discrete signals and systems

Reminder: the z-transform

Discrete signal : list of real numbers (samples)

$$
\mathrm{s}(\mathrm{k})=\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \ldots\right\}
$$

Z-transform : function of the complex z variable

$$
\mathrm{s}(\mathrm{z})=\mathrm{Z}(\mathrm{~s}(\mathrm{k}))=\sum_{\mathrm{k}=0}^{\infty} \mathrm{s}(\mathrm{k}) \cdot \mathrm{z}^{-\mathrm{k}}
$$

Existence of $s(z)$: generally no problem (convergence radius : $s(z)$ exist for a given radius $|z|>R$)

II. Discrete signals and systems

Reminder : basic signals

$\mathrm{s}(\mathrm{k})$	$\mathrm{S}(\mathrm{z})$
$\delta(\mathrm{k}):$ unit impulse	1
$\mathrm{u}(\mathrm{k}):$ unit step	$\frac{\mathrm{z}}{\mathrm{z}-1}$
$\mathrm{k} \cdot \mathrm{u}(\mathrm{k})$	$\frac{\mathrm{z}}{(\mathrm{z}-1)^{2}}$
$\mathrm{c}^{\mathrm{k}} \cdot \mathrm{u}(\mathrm{k})$	$\frac{\mathrm{z}}{\mathrm{z}-\mathrm{c}}$
$\sin (\omega \cdot \mathrm{k}) \cdot \mathrm{u}(\mathrm{k})$	$\frac{\mathrm{z} \cdot \sin (\omega)}{\mathrm{z}^{2}-2 \cdot \mathrm{z} \cdot \sin (\omega)+1}$

II. Discrete signals and systems

Reminder : from « $z »$ to «k»

First approach : use the z-transform equations (we don't give here the inverse z-transform equation, it is too ugly...)

Second approach : use tricks
\rightarrow recurrence inversion
\rightarrow Polynoms division
\rightarrow Singular value decomposition

Third approach : computer (Matlab)

II. Discrete signals and systems

Reminder : discrete transfer function

We deal with Linear Time Invariant (LTI) systems

The sequence of output and input samples are consequently simply related by:

$$
\begin{aligned}
& \mathrm{s}(\mathrm{k})+\mathrm{a}_{1} \cdot \mathrm{~s}(\mathrm{k}-1)+\mathrm{a}_{2} \cdot \mathrm{~s}(\mathrm{k}-2)+\ldots+\mathrm{a}_{\mathrm{n}} \cdot \mathrm{~s}(\mathrm{k}-\mathrm{n})= \\
& \mathrm{b}_{0} \cdot \mathrm{e}(\mathrm{k})+\mathrm{b}_{1} \cdot \mathrm{e}(\mathrm{k}-1)+\mathrm{b}_{2} \cdot \mathrm{e}(\mathrm{k}-2)+\ldots+\mathrm{b}_{\mathrm{m}} \cdot \mathrm{e}(\mathrm{k}-\mathrm{m})
\end{aligned}
$$

The delay theorem gives:

$$
\begin{aligned}
\frac{\mathrm{s}(\mathrm{z})}{\mathrm{e}(\mathrm{z})}=\mathrm{F}(\mathrm{z})= & \frac{\mathrm{b}_{0}+\mathrm{b}_{1} \cdot \mathrm{z}^{-1}+\mathrm{b}_{2} \cdot \mathrm{z}^{-2}+\ldots+\mathrm{b}_{\mathrm{m}} \cdot \mathrm{z}^{-\mathrm{m}}}{1+\mathrm{a}_{1} \cdot \mathrm{z}^{-1}+\mathrm{a}_{2} \cdot \mathrm{z}^{-2}+\ldots+\mathrm{a}_{\mathrm{n}} \cdot \mathrm{z}^{-\mathrm{n}}} \\
& \text { Normalized : } \mathrm{a}_{0}=1
\end{aligned}
$$

II. Discrete signals and systems

Reminder : discrete transfer function

Remarks
\rightarrow We prefer to use z^{-1} rather than z . (z^{-1} is a «shift » operator)
\rightarrow We often use the q^{-1} notation instead of z^{-1} : this way we don't bother with radius convergence and other fundamental mathematic stuff.
\rightarrow Impulse response : e(z) =1
The transfer function is also the impulse response (function = signal)

Causality : the output depends on past, not future

$$
\rightarrow \text { the impulse response is null for } k<0
$$

\rightarrow Confusion between «causal system» and «causal signal»

II. Discrete signals and systems

Reminder : discrete transfer function

Properties

\rightarrow Impulse response : the inverse z-transform of the transfer function
\rightarrow Step response

$$
\mathrm{s}(\mathrm{z})=\frac{\mathrm{b}_{0}+\mathrm{b}_{1} \cdot \mathrm{z}^{-1}+\mathrm{b}_{2} \cdot \mathrm{z}^{-2}+\ldots+\mathrm{b}_{\mathrm{m}} \cdot \mathrm{z}^{-\mathrm{m}}}{1+\mathrm{a}_{1} \cdot \mathrm{z}^{-1}+\mathrm{a}_{2} \cdot \mathrm{z}^{-2}+\ldots+\mathrm{a}_{\mathrm{n}} \cdot \mathrm{z}^{-\mathrm{n}}} \times \frac{1}{1-\mathrm{z}^{-1}}
$$

\rightarrow Static gain (Final value theorem applied to the last equation)

$$
\mathrm{F}_{0}=\frac{\sum_{\mathrm{i}=0}^{\mathrm{i}=\mathrm{m}} \mathrm{~b}_{\mathrm{i}}}{1+\sum_{\mathrm{i}=1}^{\mathrm{i}=\mathrm{n}} \mathrm{a}_{\mathrm{i}}}
$$

II. Discrete signals and systems

Reminder : discrete transfer function

Properties: stability
\rightarrow Any transfer function can be expressed as:

$$
F(z)=\frac{e_{0} \cdot\left(1+e_{1} \cdot z^{-1}\right) \cdot\left(1+e_{2} \cdot z^{-1}\right) \ldots\left(1+e_{m} \cdot z^{-1}\right)}{\left(1+c_{1} \cdot z^{-1}\right) \cdot\left(1+c_{2} \cdot z^{-1}\right) \ldots\left(1+c_{n} \cdot z^{-1}\right)}
$$

Coefficients c_{i} are either real or complex conjugates

For a stable system each c_{i} coefficient must verify $\left|c_{i}\right|<1$, in other words each poles must belong to the unit circle.

Properties : singular value decomposition
$F(z)$ can be decomposed in a sum of first order and second order systems
\rightarrow It is good to know how first and second order behaves

II. Discrete signals and systems

Reminder: second order systems
Properties: second order systems

II. Discrete signals and systems

Reminder: second order systems

Properties : second order systems

II. Discrete signals and systems

Reminder : frequency response

Reminder: continuous systems

$$
\left\{\begin{array}{l}
\mathrm{e}(\mathrm{t})=\cos (2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{t})+\mathrm{j} \cdot \sin (2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{t})=\mathrm{e}^{\mathrm{j} \cdot 2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{t}} \\
\mathrm{f} \in\left[\begin{array}{ll}
0 & \infty
\end{array}\right]
\end{array}\right.
$$

Analogy : discrete system

$$
\left\{\begin{array}{l}
e(k)=\cos (2 \cdot \pi \cdot f \cdot k)+j \cdot \sin (2 \cdot \pi \cdot f \cdot k)=e^{j \cdot 2 \cdot \pi \cdot f \cdot k} \\
f \in\left[\begin{array}{ll}
0 & 1
\end{array}\right]
\end{array}\right.
$$

The output signal looks like

$$
\left\{\begin{array}{l}
\mathrm{s}(\mathrm{k})=\mathrm{A}(\mathrm{f}) \cdot \mathrm{e}^{\mathrm{j} \cdot(2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{k}+\Phi(\mathrm{f}))} \\
\mathrm{f} \in\left[\begin{array}{ll}
0 & 1
\end{array}\right]
\end{array}\right.
$$

With F of phase Φ (degrees) and module A (decibels):

$$
\left\{\begin{array}{l}
F(f)=F\left(z=e^{j \cdot 2 \cdot \pi \cdot}\right) \\
f \in\left[\begin{array}{ll}
0 & 1
\end{array}\right]
\end{array}\right.
$$

III. Sampling continuous systems

III. Sampled continuous systems

Sampling a continuous transfer function

Hypothesis:
\rightarrow The continuous transfer function is known
\rightarrow The ADC is a ZOH
©

We must now deal with $\mathrm{F}+\mathrm{ZOH}$ in a whole

III. Sampled continuous systems

Sampling a continuous transfer function

Zero Holder Hold : the sampled input is blocked during one sampling delay.

The impulse response of a zoh is consequently:

The Laplace transform of the above signal is:

$$
\mathrm{ZOH}(\mathrm{~s})=\frac{1}{\mathrm{~s}}-\frac{\mathrm{e}^{-\mathrm{T}_{\mathrm{e}} \cdot \mathrm{~s}}}{\mathrm{~s}}
$$

III. Sampled continuous systems

Sampling a continuous transfer function

The impulse response of $\mathrm{ZOH}+\mathrm{F}$ is :

$$
s(s)=\left(\frac{1}{s}-\frac{e^{-j T_{e}}}{s}\right) \cdot F(s)=\frac{1}{s} \cdot F(s)-e^{-j \cdot T_{c}} \cdot \frac{1}{s} F(s)
$$

Two terms for the impulse response :

$$
\mathrm{s}(\mathrm{k})=\mathrm{Z}\left(\frac{1}{\mathrm{~s}} \cdot \mathrm{~F}(\mathrm{~s})\right)-\mathrm{z}^{-1} \cdot \mathrm{Z}\left(\frac{1}{\mathrm{~s}} \mathrm{~F}(\mathrm{~s})\right)=\left(1-\mathrm{z}^{-1}\right) \cdot \mathrm{Z}\left(\frac{1}{\mathrm{~s}} \mathrm{~F}(\mathrm{~s})\right)
$$

Usually the z-transfer function of $\mathrm{ZOH}+\mathrm{F}$ is given by tables:

III. Sampled continuous systems		
Sampling a continuous transfer function		
	Tables	Matlab
$\mathrm{F}(\mathrm{s})$	$\mathrm{F}_{\mathrm{Boz}}(\mathrm{z})$	Matlab \% Definition of a continuous system sysc=tf(1,[11]); \% z_transfer function after sampling $\mathrm{Te}=0.1$; sysd=c2d(sysc, Te,'zoh'); \% Notation with $z^{\wedge}-1$ sysd.variable='z
1	1	
1	$\frac{\mathrm{T}_{\mathrm{e}} \cdot \mathrm{z}^{-1}}{1-\mathrm{z}^{-1}}$	
s	$1-z^{-1}$	
$\frac{1}{1+\mathrm{T} \cdot \mathrm{s}}$	$\left\{\begin{array}{l}\frac{b_{1} \cdot z^{-1}}{1+a_{1} \cdot z^{-1}} \\ \mathrm{~b}_{1}=1-e^{-\mathrm{T}_{2} / \mathrm{T}} \quad \mathrm{a}_{1}=-\mathrm{e}^{-\mathrm{T}_{2} / \mathrm{T}}\end{array}\right.$	
$\begin{aligned} & \frac{\mathrm{e}^{-\mathrm{L} \cdot \mathrm{~s}}}{1+\mathrm{T} \cdot \mathrm{~s}} \\ & \mathrm{~L}<\mathrm{T}_{\mathrm{e}} \end{aligned}$	$\begin{cases}\frac{b_{1} \cdot z^{-1}+b_{2} \cdot z^{-2}}{1+a_{1} \cdot z^{-1}} & a_{1}=-e^{-T_{c} / T} \\ b_{1}=1-e^{\left(L-T_{c}\right) / T} & b_{2}=e^{-T_{c} / T}\left(e^{L / T}-1\right)\end{cases}$	

III. Sampled continuous systems

Choice of sampling time

The sampling time is chosen according to the closed loop expected performance

Sampling frequency : 5 to 25 fois the expected closed loop bandwidth.

Example : third order system

$$
\gg F=1.5 /\left(1+s+s^{\wedge} 2\right) /(1+s)
$$

Closed loop bandwitdh at -3 dB of $\mathrm{F} /(1+\mathrm{F}): 0.3 \mathrm{~Hz}$

Sampling time : 5 Hz

III. Sampled continuous systems

First approach : discretise a continuous controller

The sampling effect (ZOH) is neglected.
Example : continuous PD: $\quad \operatorname{PID}(\mathrm{s})=\frac{\mathrm{e}(\mathrm{s})}{\varepsilon(\mathrm{s})}=\mathrm{k}_{\mathrm{p}}+\mathrm{k}_{\mathrm{D}} \cdot \mathrm{s}$

$$
\mathrm{e}(\mathrm{t})=\mathrm{k}_{\mathrm{p}} \cdot \varepsilon(\mathrm{t})+\mathrm{k}_{\mathrm{D}} \cdot \frac{\mathrm{~d} \varepsilon(\mathrm{t})}{\mathrm{dt}}
$$

Continuous derivative is replaced by a discrete derivative :

$$
\mathrm{e}(\mathrm{k})=\mathrm{k}_{\mathrm{p}} \cdot \varepsilon(\mathrm{k})+\mathrm{k}_{\mathrm{D}} \cdot \frac{\varepsilon(\mathrm{k})-\varepsilon(\mathrm{k}-1)}{\mathrm{T}_{\mathrm{e}}}
$$

Transfer function :

$$
\text { S to } z \text { equivalence : } \quad s=\frac{1-\mathrm{z}^{-1}}{\mathrm{~T}_{\mathrm{e}}}
$$

$$
\mathrm{e}(\mathrm{z})=\mathrm{k}_{\mathrm{p}} \cdot \varepsilon(\mathrm{z})+\mathrm{k}_{\mathrm{D}} \cdot \frac{\varepsilon(\mathrm{z})-\mathrm{z}^{-1} \varepsilon(\mathrm{z})}{\mathrm{T}_{\mathrm{e}}}=\left(\mathrm{k}_{\mathrm{p}}+\mathrm{k}_{\mathrm{D}} \cdot \frac{1-\mathrm{z}^{-1}}{\mathrm{~T}_{\mathrm{e}}}\right) \cdot \varepsilon(\mathrm{z})
$$

III. Sampled continuous systems

First approach : discretise a continuous controller

More generally the problem is to approximate a differential equation : cf numerical methods of integration

III. Sampled continuous systems

First approach : discretise a continuous controller

Equivalence of contrinuous poles after «s to $z »$ conversion

(a)
(c)

(d)
(a) : continuous
(b) : Euler forward
(c) : Euler backward
(d) : Tustin

IV. Identification of discrete systems

IV. Identification of discrete systems

Introduction

Before the design process of a controller one must have a discrete model of the plant
\rightarrow First approach : continuous model and/or identification then discretization (cf last chapter)
\rightarrow Second approach : tests on the real system, measurements (sampled), identification algorithm

For a full course on this topic see 3d year course "airplane identification"

IV. Identification of discrete systems
Naive approach
(But easy, fast and easy to explain)
\rightarrow Standard test (step, impulse)
\rightarrow Try to fit as well as possible a model (first order, second order with delay,
etc...)
... « fit as well as possible » ... \rightarrow criteria ?... optimisation ?...
4

IV. Identification of discrete systems

Naive approach

A little bit of method?
\rightarrow trial and error fitting of the outputs $*$
\rightarrow find a criteria \odot, example : mean square error...

$$
\mathrm{J}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{t}=1}^{\mathrm{N}}\left(\mathrm{y}_{\text {reel }}(\mathrm{t})-\mathrm{y}_{\text {mesuré }}(\mathrm{t})\right)^{2}
$$

>> $\mathrm{t}=0: 0.1: 8$;

$\gg p=t($ (p ');
>> sysreal $=\mathrm{tf}\left(1 /\left(1+2^{*} \mathrm{p}\right) /\left(1+0.6^{*} \mathrm{p}\right)^{*}\left(1+0.5^{*} \mathrm{p}\right)\right)$
$+0.02^{*}$ randn(length $(\mathrm{t}), 1$);
>> yreal $=$ step $($ sysreal, $t)+0.02^{*}$ randn $($ length $(\mathrm{t}), 1)$;
>> ysimul=step(1/(1+2*p),t);
>> plot(t,yreal,'bo',t,ysimul,'rx')
>> eps=yreel-ysimul;
>> J=1/length(eps)*eps'*eps;

IV. Identification of discrete systems

Naive approach

Drawbacks :
\rightarrow Test signals with high amplitude (is the system still linear ?)
\rightarrow Reduced precision
\rightarrow Perurbation noise not taken into account
\rightarrow Perturbation noise reduces the performance of the identification
\rightarrow long, not very rigorous...
Advantage:
\rightarrow easy to understand...

IV. Identification of discrete systems
Second method (the good one) : « estimation »
\rightarrow Perform a « rich test» (random input signal, rich in frequency)
\rightarrow Fit the model that best predict the output.

IV. Identification of discrete systems

Example of an Identification Process

Linear model (ARX) :

$A \cdot y=B \cdot u+e$
White noise
$y(t+1)+a_{1} \cdot y(t)+a_{2} \cdot y(t-1)+\ldots+a_{n_{2}} \cdot y\left(t-n_{a}+1\right)=$
$\mathrm{b}_{1} \cdot \mathrm{u}(\mathrm{t})+\mathrm{b}_{2} \cdot \mathrm{u}(\mathrm{t}-1)+\ldots+\mathrm{b}_{\mathrm{n}_{\mathrm{h}}} \cdot \mathrm{u}\left(\mathrm{t}-\mathrm{n}_{\mathrm{b}}+1\right)+\mathrm{e}(\mathrm{t})$

Model used as a predictor :
$\mathrm{y}_{\text {predict }}(\mathrm{t}+1)=-\left(\mathrm{a}_{1} \cdot \mathrm{y}(\mathrm{t})+\mathrm{a}_{2} \cdot \mathrm{y}(\mathrm{t}-1)+\ldots+\mathrm{a}_{\mathrm{n}_{\mathrm{a}}} \cdot \mathrm{y}\left(\mathrm{t}-\mathrm{n}_{\mathrm{a}}+1\right)\right)+$

\rightarrow Try to minimize the difference between prediction and actual measurement.

IV. Identification of discrete systems				
	mple : ord	Example ers $n_{a}=3$ et	an 1 $=2$	ication Process
mea	urements	prediction	error	$y p 5=-\left(a_{1} \cdot y 1+a_{2} \cdot 2+a_{3} \cdot y 3\right)_{+}$
u1	y1			
u2	y 2			
u3	y3	yp3	eps3	eps5 = yp5 - y 5
u4	y4	yp4	eps 4	
u5	y 5	yp5	eps5	$\mathrm{J}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{t}=1}^{\mathrm{N}}\left(\mathrm{eps}_{\mathrm{t}}\right)^{2}$
u6	y6	yp6	eps6	
u7	y7	yp7	eps7	
u8	y8	yp8	eps8	Unknown : coefficients$\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}\right\}$
		Total	J	

IV. Identification of discrete systems

Example of an Identification Process

Recursive Least Square Algorithm
\rightarrow Possible since model is linear
\rightarrow Possible since quadratic criteria
\rightarrow Interesting because of the recursive version

$$
\begin{aligned}
& \mathrm{y}_{\text {predict }}(\mathrm{t}+1)=-\left(\mathrm{a}_{1} \cdot \mathrm{y}(\mathrm{t})+\mathrm{a}_{2} \cdot \mathrm{y}(\mathrm{t}-1)+\ldots+\mathrm{a}_{\mathrm{n}_{\mathrm{a}}} \cdot \mathrm{y}\left(\mathrm{t}-\mathrm{n}_{\mathrm{a}}+1\right)\right)+ \\
& \ldots \ldots \ldots \ldots \ldots \mathrm{b}_{1} \cdot \mathrm{u}(\mathrm{t})+\mathrm{b}_{2} \cdot \mathrm{u}(\mathrm{t}-1)+\ldots+\mathrm{b}_{\mathrm{n}_{\mathrm{b}}} \cdot \mathrm{u}\left(\mathrm{t}-\mathrm{n}_{\mathrm{b}}+1\right)
\end{aligned}
$$

Prediction equation can be re-written :

$$
y_{\text {predict }}=\theta^{\mathrm{T}}(\mathrm{t}) \cdot \phi(\mathrm{t})
$$

Where : $\quad \theta(t)^{\mathrm{T}}=\left[\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \mathrm{~b}_{1}, \mathrm{~b}_{2}, \ldots\right]$

$$
\varphi(t)^{\mathrm{T}}=[-\mathrm{y}(\mathrm{t}),-\mathrm{y}(\mathrm{t}-1), \ldots \mathrm{u}(\mathrm{t}), \mathrm{u}(\mathrm{t}-1), \ldots]
$$

IV. Identification of discrete systems

Least Square Algorithm

Estimate θ taking into account the full set of measurements
\rightarrow Obtained θ is optimal

$$
\hat{\theta}=\mathrm{F}(\mathrm{t}) \sum_{\mathrm{i}=1}^{\mathrm{t}}(\mathrm{y}(\mathrm{i}) \cdot \phi(\mathrm{i}-1))
$$

With :

$$
F(t)^{-1}=\sum_{i=1}^{t}\left(\varphi(i-1) \cdot \varphi(i-1)^{T}\right)
$$

IV. Identification of discrete systems

Recursive Least Square (rls) Algorithm
Estimate θ recursively for $\mathrm{t}=0 \ldots \mathrm{~N}$
$\rightarrow \theta$ obtained after recursion is optimal
$\theta(\mathrm{t})=\theta(\mathrm{t}-1)+\mathrm{F}(\mathrm{t}) \cdot \varphi(\mathrm{t}) \cdot\left(\mathrm{y}(\mathrm{t})-\theta^{\mathrm{T}}(\mathrm{t}-1) \cdot \varphi(\mathrm{t})\right)$
with :
$\mathrm{F}(\mathrm{t})^{-1}=\mathrm{F}(\mathrm{t}-1)^{-1}+\varphi(\mathrm{t}) \cdot \varphi(\mathrm{t})^{\mathrm{T}}$

Algorithm can be applied in real time
\rightarrow parameters supervision
\rightarrow diagnostis
\rightarrow Algorithm can be improved with a forget factor : $\lambda=0.95 \ldots 0.99$
$\theta(\mathrm{t})=\theta(\mathrm{t}-1)+\mathrm{F}(\mathrm{t}) \cdot \varphi(\mathrm{t}) \cdot\left(\mathrm{y}(\mathrm{t})-\theta^{\mathrm{T}}(\mathrm{t}-1) \cdot \varphi(\mathrm{t})\right)$
with :
$\mathrm{F}(\mathrm{t})^{-1}=\lambda \cdot \mathrm{F}(\mathrm{t}-1)^{-1}+\varphi(\mathrm{t}) \cdot \varphi(\mathrm{t})^{\mathrm{T}}$

IV. Identification of discrete systems

Identification algorithms (general)

Les algorithmes d'identification sont en général des variantes des moindres carrés récursifs
En tous cas ils ont tous, pour les algorithmes récursifs, la forme suivante :

$$
\begin{aligned}
& \theta(\mathrm{t})=\theta(\mathrm{t}-1)+\mathrm{F}(\mathrm{t}) \cdot \varphi(\mathrm{t}) \cdot\left(\mathrm{y}(\mathrm{t})-\theta^{\mathrm{T}}(\mathrm{t}-1) \cdot \varphi(\mathrm{t})\right) \\
& \text { avec } \\
& \mathrm{F}(\mathrm{t})^{-1}=\lambda \cdot \mathrm{F}(\mathrm{t}-1)^{-1}+\varphi(\mathrm{t}) \cdot \varphi(\mathrm{t})^{\mathrm{T}}
\end{aligned}
$$

IV. Identification of discrete systems

Identification method

1. Choice of a frequency sampling
\rightarrow Not too big
\rightarrow Not too small
\rightarrow Adapted to the fastet expected dynamic (usually closed loop dynamic)

IV. Identification of discrete systems

Identification method

2. Excitation signal
\rightarrow Le signal doit être riche en fréquence
\rightarrow Signal can (and must) be of small amplitude (a few \%)
Example 1 : Pseudo Random Binary Signal

Matlab / System Identification Toolboxe
>> U=idinput(500,'prbs')

Example 2 : excitation 3-2-1-1 (airplane identification)

IV. Identification of discrete systems

Identification method

3. Test and measurements
\rightarrow Choice of a setpoint
\rightarrow Test
\rightarrow Remove mean of measurements
\rightarrow Remove absurd values
4. Model choice
\rightarrow Example: ARX, degree of A and B
5. Apply algorithm
\rightarrow Example: rls
6. Validate
\rightarrow Validation criteria?

Iterate

IV. Identification of discrete systems

Validation criteria

1. The model must predict the output
2. The model behavior must be the same than the original for perturbations

The model :

$$
\begin{aligned}
& \mathrm{y}(\mathrm{t}+1)+\mathrm{a}_{1} \cdot \mathrm{y}(\mathrm{t})+\mathrm{a}_{2} \cdot \mathrm{y}(\mathrm{t}-1)+\ldots+\mathrm{a}_{\mathrm{n}_{\mathrm{a}}} \cdot \mathrm{y}\left(\mathrm{t}-\mathrm{n}_{\mathrm{a}}+1\right)= \\
& \mathrm{b}_{1} \cdot \mathrm{u}(\mathrm{t})+\mathrm{b}_{2} \cdot \mathrm{u}(\mathrm{t}-1)+\ldots+\mathrm{b}_{\mathrm{n}_{\mathrm{b}}} \cdot \mathrm{u}\left(\mathrm{t}-\mathrm{n}_{\mathrm{b}}+1\right)+\mathrm{e}(\mathrm{t})
\end{aligned}
$$

With the estimated model $\left(a_{i}, b_{i}\right)$ one can estimate the error !
$e_{\text {est }}(t)=y_{\text {est }}(t+1)-y(t+1)$
$e_{\text {est }}(t)=a_{1} \cdot y(t)+a_{2} \cdot y(t-1)+\ldots+a_{n_{\mathrm{a}}} \cdot y\left(t-n_{a}+1\right)$
$\ldots \ldots \ldots \ldots \ldots . . b_{1} \cdot u(t)+b_{2} \cdot u(t-1)+\ldots+b_{n_{b}} \cdot u\left(t-n_{b}+1\right)$
..............- $-\mathrm{y}(\mathrm{t}+1)$
\rightarrow Check that $\mathrm{e}_{\text {est }}(\mathrm{t})$ is a white noise !

IV. Identification of discrete systems
Use dedicated software
Example : Matlab / System Identification Toolboxe...

| IV. Identification of discrete systems |
| :---: | :---: |
| Use dedicated software |
| \rightarrow Accelerate the identification process |
| \rightarrow Matlab licence $=3000 €$ toolboxes licence... |
| \rightarrow homemade »toolboxes are used for dedicated applications |

IV. Identification of discrete systems

Non parametric identification

From input/output datas, estimate the transfer function :
\rightarrow Input / output cross correlation
\rightarrow FFT, Hamming window and tutti quanti
\rightarrow Gain and phase, Bode diagram

From input / output datas, estimate the impulse response
\rightarrow Apply RLS algorithm with n_{B} big and $n_{A}=0$
\rightarrow Allow for instance to quickly estimate the pure delay

V. Closed loop systems	
Static gain	
As seen before	
$G_{0}=\frac{\sum_{i=0}^{i=m} b_{i}}{1+\sum_{i=1}^{i=0} b_{i}+\sum_{i=1}^{i=-1} a_{i}}$	
Condition to have a unitary closed loop static gain (no static error) :	
$\mathrm{G}_{0}=\frac{\sum_{i=1}^{i=\sum_{i}} \mathrm{~b}_{\mathrm{i}}}{1+\sum_{i=0}^{\sum_{i}} \mathrm{~b}_{\mathrm{i}}+\sum_{i=1}^{i=a_{i}}}=1 \quad \Leftrightarrow \underset{\text { Integrator }}{\mathrm{F}(z)=\frac{\mathrm{s}(\mathrm{z})}{\mathrm{e}(\mathrm{z})}=\frac{1}{1-\mathrm{z}^{-1}} \cdot \frac{\mathrm{~B}(z)}{\mathrm{A}^{\prime}(z)}}$	67

V. Closed loop systems

Perturbation rejection

Perturbation-output transfer function

$$
S_{y p}(z)=\frac{\mathrm{s}(\mathrm{z})}{\mathrm{p}(\mathrm{z})}=\frac{\mathrm{A}\left(\mathrm{z}^{-1}\right)}{\mathrm{A}\left(\mathrm{z}^{-1}\right)+\mathrm{B}\left(\mathrm{z}^{-1}\right)}
$$

\rightarrow Same condition on $\mathrm{A}(1)$ to perfectly reject the perturbations (integrator in the loop)

Generally the rejection perturbation condition is weaker :
$\rightarrow\left|\mathrm{S}_{\mathrm{yp}}\left(\mathrm{e}^{\mathrm{j} 2 \pi \mathrm{f}}\right)\right|<\mathrm{S}_{\text {max }}$ for a subinterval of $[00.5]$

VI. Control of closed loop systems

Hypothesis

Requisites:
\rightarrow Synchronous sampling
\rightarrow Regular sampling
\rightarrow Sampling time adapted to the desired closed loop performance

VI. Control of closed loop systems

Discretization of a continuous controller

1. Process is modelled as a linear transfer function (Laplace)
\rightarrow No need to know a sampled model of the system
2. Design of a continuous controller
3. Discretization of the continuous controller
\rightarrow Many discretization methods
\rightarrow Problem if T_{e} too big (stability)
\rightarrow Problem if T_{e} too small (numerical round up)

VI. Control of closed loop systems

Design of a discrete controller

1. System is known as a discrete transfer function (z-transform)
\rightarrow Discxretizaiton of a continuous model + ZOH
\rightarrow Direct identification
2. Design of a discrete controller
3. PID 1
4. PID 2
5. Pole placement
6. Independant tracking and regulation goals

VI. Control of closed loop systems

PID 1

Continuous PID :

$$
\mathrm{K}_{\mathrm{PID}}(\mathrm{~s})=\mathrm{K} \cdot\left(1+\frac{1}{\mathrm{~T}_{\mathrm{i}} \cdot \mathrm{~s}}+\frac{\mathrm{T}_{\mathrm{d}} \cdot \mathrm{~s}}{1+\frac{\mathrm{T}_{\mathrm{d}}}{\mathrm{~N}} \cdot \mathrm{~s}}\right)
$$

Discretization (Euler) : $\quad K_{\text {PID }}(q)=K \cdot\left(1+\frac{1}{T_{i} \cdot \frac{1-q^{-1}}{T_{e}}}+\frac{T_{d} \cdot \frac{1-q^{-1}}{T_{e}}}{1+\frac{T_{d}}{N} \cdot \frac{1-q^{-1}}{T_{e}}}\right)$

VI. Control of closed loop systems
PID 1
Main drawback : new zeros given by R at the denominator...
Solution : PID2

VI. Control of closed loop systems

PID 2

Starting from the already known PID1:

R is replaced by $R(1)$:

$$
\mathrm{H}_{\mathrm{CL}}=\mathrm{R}(1) \cdot \frac{\mathrm{B}}{\mathrm{P}}
$$

Static gain is one, desired dynamic remains the same
\rightarrow Same performances in rejection perturbation
\rightarrow Better performance (smaller overshoot) in tracking

VI. Control of closed loop systems

Pole placement

Can be seen as a more general PID 2 where degrees of R and S are not constrained.

$$
\begin{aligned}
& \text { ed. } \\
& \mathrm{H}_{\mathrm{OL}}=\frac{q^{-d} \cdot B\left(q^{-1}\right)}{A\left(q^{-1}\right)} \\
& \left\{\begin{array}{l}
A\left(q^{-1}\right)=1+a_{1} \cdot q^{-1}+\ldots+a_{n_{A}} \cdot q^{-n_{A}} \\
B\left(q^{-1}\right)=b_{1} \cdot q^{-1}+\ldots+b_{n_{B}} \cdot q^{-n_{B}}=q^{-1} \cdot B^{*}\left(q^{-1}\right)
\end{array}\right.
\end{aligned}
$$

Tracking performance

$$
\begin{aligned}
& \qquad H_{C L}=\frac{q^{-d} \cdot B\left(q^{-1}\right) \cdot T\left(q^{-1}\right)}{P\left(q^{-1}\right)} \\
& P\left(q^{-1}\right)=A\left(q^{-1}\right) \cdot \mathrm{S}\left(q^{-1}\right)+q^{-d} \cdot \mathrm{~B}\left(\mathrm{q}^{-1}\right) \cdot \mathrm{R}\left(\mathrm{q}^{-1}\right)=1+\mathrm{p}_{1} \cdot \mathrm{q}^{-1}+\ldots+\mathrm{p}_{\mathrm{n}_{\mathrm{p}}} \cdot \mathrm{q}^{-\mathrm{n}_{\mathrm{p}}} \\
& \text { Regulation performance : } \quad \mathrm{S}_{\mathrm{yp}}=\frac{\mathrm{A}\left(\mathrm{q}^{-1}\right) \cdot \mathrm{S}\left(\mathrm{q}^{-1}\right)}{\mathrm{P}\left(\mathrm{q}^{-1}\right)}
\end{aligned}
$$

VI. Control of closed loop systems

Pole placement

P poles gives the closed loop dynamic :
$\rightarrow \mathrm{P}_{\mathrm{D}}$ Dominant poles (second order, natural frequency, damping)
$\rightarrow P_{F}$ auxiliary poles, faster
$A, B, P \rightarrow P$: compute R and S

Static gain :
\rightarrow S $=\left(1-q^{-1}\right) \cdot S^{\prime}$
Rejection of harmonic perturbation
$\rightarrow \mathrm{S}=\mathrm{H}_{\mathrm{S}} . \mathrm{S}^{\prime}$ where $\left|\mathrm{H}_{\mathrm{S}}\right|$ is small at a given frequency

Remove sensibility to an given frequency :
$\rightarrow R=H_{R} \cdot R^{\prime}$ where $\left|H_{R}\right|$ is small at a given frequency

VI. Control of closed loop systems

Pole placement

Perturbation rejection : choice of R and S
Static gain :
\rightarrow S $=\left(1-q^{-1}\right) \cdot S^{\prime}$

Rejection of harmonic perturbation
$\rightarrow \mathrm{S}=\mathrm{H}_{\mathrm{S}} . \mathrm{S}^{\prime}$ where $\left|\mathrm{H}_{\mathrm{S}}\right|$ is small at a given frequency

Remove sensibility to an given frequency:
$\rightarrow R=H_{R} \cdot R^{\prime}$ where $\left|H_{R}\right|$ is small at a given frequency
$P_{F} \cdot P_{D}=\left(1-q^{-1}\right) \cdot H_{S} \cdot S^{\prime} \cdot A+H_{R} \cdot R^{\prime} \cdot B$
A. $\left(1-q^{-1}\right) \cdot H_{S} \quad B \cdot H_{R} \quad P_{F} \cdot P_{D} \rightarrow R^{\prime}$ and S^{\prime}

VI. Control of closed loop systems

Placement de pôle

Tracking : choice of A^{*} and B^{*} :
\rightarrow chosen according to tracking specifications

VI. Control of closed loop systems

Independant tracking and perturbation rejection specifications

P chosen to cancel poles of B^{*}
\rightarrow B must be stable

Tracking : choice of T'

$$
\mathrm{S}_{\mathrm{yy}}\left(\mathrm{q}^{-1}\right)=\mathrm{T}^{*}\left(\mathrm{q}^{-1}\right) \frac{\mathrm{q}^{-\mathrm{d}} \cdot \mathrm{q}^{-1} \cdot \mathrm{~B}^{*}\left(\mathrm{q}^{-1}\right)}{\mathrm{P}\left(\mathrm{q}^{-1}\right) \cdot \mathrm{B}^{*}\left(\mathrm{q}^{-1}\right)}
$$

With :

$$
\mathrm{T}^{\prime}\left(\mathrm{q}^{-1}\right)=\mathrm{P}\left(\mathrm{q}^{-1}\right)
$$

One obtain :

$$
S_{y y^{\prime}}\left(q^{-1}\right)=q^{-(d+1)}
$$

