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Prerequisites :
Automatique ENSICA 1A et 2A
Traitement numérique du signal ENSICA 1A
(Control and signal processing, basics)

Tools : 
Matlab / Simulink

References : 
• « Commande des systèmes », I. D. Landau, Edition 

Lavoisier 2002.

Planning
22 slots of 1h15

Overview

Overview

Discrete signals and systems

Sampling continuous systems

Identification of discrete systems

Closed loop systems

Control methods

Control by computer
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I. Introduction

6

II. Discrete signals and systems

Signal processing / Control 

� Signal processing gives tools to describe and filter signals
� Control theory use these tools to deal with closed loop systems

� More generally, control theory deal with :
� discrete state system analysis and control (Petri nets, etc...)
� Complex systems, UML, etc...
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II. Discrete signals and systems

What we deal with in this course

 

F1(z) 

E(z) 
S(z) U(z) 

P(z) 

– 

R(z) F2(z) 

F3(z) 

S(z) 

T(z) 

F4(z) 

Or, simply :

 

F(z) 
e(z) s(z) u(z) 

p(z) 

– 

Computer DAC System ADC 

The same problem as seen by the control system engineer :
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II. Discrete signals and systems

II. Discrete signals and 
systems
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II. Discrete signals and systems

Reminder : the z-transform

Discrete signal : list of real numbers (samples)

Z-transform : function of the complex z variable
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Existence of s(z) : generally no problem (convergence radius : s(z) exist for a 
given radius |z| > R )
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II. Discrete signals and systems

Reminder : properties of the z-transform
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Delay theorem

Final value theorem

Linearity
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II. Discrete signals and systems

Reminder : basic signals

s(k) S(z) 
δ(k) : unit impulse 1 

u(k) : unit step 
1z

z

−
 

k.u(k) ( )21z

z

−

 ( )kuck ⋅  
cz

z

−

 ( ) ( )kuksin ⋅⋅ω

 

( )
( ) 1sinz2z

sinz
2 +ω⋅⋅−

ω⋅
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II. Discrete signals and systems

Reminder : from « z » to « k »

First approach : use the z-transform equations (we don’t give here the 

inverse z-transform equation, it is too ugly...)

Second approach : use tricks

� recurrence inversion
� Polynoms division
� Singular value decomposition

Third approach : computer (Matlab)
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II. Discrete signals and systems

Reminder : discrete transfer function

We deal with Linear Time Invariant (LTI) systems

The sequence of output and input samples are consequently simply related
by:

Discrete 
LTI system 

e(k) s(k) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )mkeb...2keb1kebkeb

nksa...2ksa1ksaks

m210

n21

−⋅++−⋅+−⋅+⋅
=−⋅++−⋅+−⋅+

The delay theorem gives:
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Normalized : a0 = 1

14

II. Discrete signals and systems

Reminder : discrete transfer function

Remarks

� We prefer to use z-1 rather than z. (z-1 is a « shift » operator)

� We often use the q-1 notation instead of  z-1 : this way we don’t bother with
radius convergence and other fundamental mathematic stuff.

� Impulse response : e(z) = 1 
The transfer function is also the impulse response
(function = signal)

� Causality : the output depends on past, not future
� the impulse response is null for  k < 0
� Confusion between « causal system » and « causal signal »
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II. Discrete signals and systems

Reminder : discrete transfer function

Properties

� Impulse response : the inverse z-transform of the transfer function

� Step response
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� Static gain (Final value theorem applied to the last equation)
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II. Discrete signals and systems

Reminder : discrete transfer function

Properties : stability

� Any transfer function can be expressed as:

( ) ( ) ( ) ( )
( ) ( ) ( )1
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1
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zc1zc1zc1

ze1ze1ze1e
zF

−−−

−−−

⋅+⋅+⋅⋅+
⋅+⋅+⋅⋅+⋅

=
L

L

Coefficients ci are either real or complex conjugates

For a stable system each ci coefficient must verify |ci| <1, in other words
each poles must belong to the unit circle.

F(z) can be decomposed in a sum of first order and second order systems
� It is good to know how first and second order behaves

Properties : singular value decomposition
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II. Discrete signals and systems

Reminder : first order systems

Properties : first order system
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II. Discrete signals and systems

Reminder : second order systems

Properties : second order systems
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II. Discrete signals and systems
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Reminder : second order systems

Properties : second order systems
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II. Discrete signals and systems

Reminder : frequency response

Reminder : continuous systems

( ) ( )
[ ]
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The output signal looks like

( ) ( )( )

[ ]



∈
⋅= Φ+⋅⋅π⋅⋅

10f

efA)k(s fkf2j
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II. Discrete signals and systems

Reminder : frequency response

Definition : frequency response

( ) ( )
[ ]




∈
== ⋅π⋅⋅

10f

ezFfF f2j
f : normalized frequency (between 0 and 1)
F(f) : frequency response

Property : Bode diagram
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II. Discrete signals and systems

Reminder : Nyquist-Shannon sampling theorem
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End of  C1 C2

III. Sampling
continuous

systems
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III. Sampled continuous systems

Discrete systems

A real system is generally continuous (and described by differential
equations)

 

Computer DAC System ADC 

An interface provides sampled measurements at a given frequency:
� Digital to Analog Converter (DAC)

� smart sensor

A computer provides at a given frequency the input of the system

An interface transforms the computer output into a continuous input 
for the system

� Analog to Digital Converter (ADC)

� smart actuator
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III. Sampled continuous systems

Hypothesis

� Sampling is regular
� Sampling is synchronous
� The computer computes the control according to the 
curr »ent measurement and a finite set of pas 
measurements.

 

Computer DAC System ADC 
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III. Sampled continuous systems

Sampling a continuous transfer function

Hypothesis : 

� The continuous transfer function is known
� The ADC is a ZOH     ☺

We must now deal with F+ZOH in a whole

 
ZOH F(p) 

28

III. Sampled continuous systems

Zero Holder Hold : the sampled input is blocked during one sampling

delay.

The impulse response of a zoh is consequently:

 

t 

Te 0 

1 

The Laplace transform of the above signal is:

( )
eT s1 e

ZOH s
s s

− ⋅

= −

Sampling a continuous transfer function
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III. Sampled continuous systems

The impulse response of ZOH+F is :
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Two terms for the impulse response :
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Usually the z-transfer function of ZOH+F is given by tables:

Sampling a continuous transfer function
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III. Sampled continuous systems

Tables
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−
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Matlab 

% Defini t ion of a cont inuous system :

sysc=tf(1, [1  1]) ; 

% z_transfer funct ion af ter  sampl ing a t Te

Te=0.1; 

sysd=c2d(sysc,Te, 'zoh ' ) ;  

% Notat ion with  z^-1 

sysd.var iab le='z 

Matlab

Sampling a continuous transfer function
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III. Sampled continuous systems

Sampling time delay equivalence

A sampling time of Te can be approximated as a delay of Te/2 : 
instability in closed loo^p.
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>> F=2*s/(1+s+s^2)/s/(1+s)
>> G=F;
>> G.ioDelay=0.5
>> nyquist(F,G)

FG
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III. Sampled continuous systems

Choice of sampling time

The sampling time is chosen according to the closed loop expected
performance 

Example : third order system
>> F=1.5/(1+s+s^2)/(1+s)

Sampling frequency : 5 to 25 fois the expected closed loop bandwidth.

Closed loop bandwitdh at -3dB of F/(1+F) : 0.3 Hz

Sampling time : 5 Hz
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III. Sampled continuous systems
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III. Sampled continuous systems

Root Locus

Real Axis

Im
ag

in
ar

y 
A

xi
s

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
0.120.240.380.50.640.76

0.88

0.97

0.120.240.380.50.640.76

0.88

0.97

0.511.522.5

System: F
Gain: 1.64

Pole: -0.0488 + 1.35i
Damping: 0.0362

Overshoot (%): 89.2
Frequency (rad/sec): 1.35

System: F
Gain: 1.69
Pole: -1.92
Damping: 1

Overshoot (%): 0
Frequency (rad/sec): 1.92

Choice of sampling frequency



18

35

III. Sampled continuous systems
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III. Sampled continuous systems

Sampling effect : discretization

Sampling is always associated to a discretization of the signal !
Example : 

- Signal sampled at 0.2s and discretized at a resolution of 0.1.
- The numerical derivative of the signal
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III. Sampled continuous systems

First approach : discretise a continuous controller

The sampling effect (ZOH) is neglected. 

Example : continuous PD : ( ) ( )
( )

( ) ( ) ( )

p D

p D

e s
PID s k k s

s

d t
e t k t k

dt

= = + ⋅
ε

ε
= ⋅ε + ⋅

Continuous derivative is replaced by a discrete derivative :

( ) ( ) ( ) ( )
e

Dp T

1kk
kkkke

−ε−ε⋅+ε⋅=

Transfer function :

( ) ( ) ( ) ( ) ( )z
T

z1
kk

T

zzz
kzkze

e

1

Dp
e

1

Dp ε⋅







 −⋅+=ε−ε⋅+ε⋅=
−−

S to z equivalence :
e

1

T

z1
s

−−=
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III. Sampled continuous systems

More generally the problem is to approximate a differential equation : cf

numerical methods of integration

Method s to z equivalence  

Euler's forward 
method 

e
1

1

Tz

z1
s

⋅
−= −

−
 

  

Euler's backward 
method 

e

1

T

z1
s

−−=

 
  

Tustin method 
1

1

e z1

z1

T

2
s −

−

+
−⋅=

 
 

First approach : discretise a continuous controller
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III. Sampled continuous systems

Warning : methods are not equivalent !
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III. Sampled continuous systems

Equivalence of contrinuous poles after « s to z » conversion

 

(a) (b) 

1 

1 

(c) (d) 

s z 

z z (a) : continuous

(b) : Euler forward
(c) : Euler backward
(d) : Tustin

First approach : discretise a continuous controller
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III. Sampled continuous systems

End C3 C4

IV. Identification of 
discrete systems
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IV. Identification of discrete systems

Introduction

Before the design process of a controller one must have a discrete model of the 

plant

� First approach : continuous model and/or identification then discretization (cf
last chapter)

� Second approach : tests on the real system, measurements (sampled), 
identification algorithm

For a full course on this topic see 3d year course “airplane identification”
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IV. Identification of discrete systems

Naive approach

(But easy, fast and easy to explain)

� Standard test (step, impulse)

� Try to fit as well as possible a model (first order, second order with delay, 
etc...)

... « fit as well as possible » ...
� criteria ?...
� optimisation ?…
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IV. Identification of discrete systems

Example : real step test (o) and simulated first order step (x)
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IV. Identification of discrete systems

A little bit of method ?

� trial and error fitting of the outputs �
� find a criteria ☺ , example : mean square error...

( ) ( )( )∑
=

−=
N

1t

2
mesuréreel tyty

N

1
J

>> t=0:0.1:8;

>> p=tf('p');

>> sysreal=tf(1/(1+2*p)/(1+0.6*p)*(1+0.5*p))            
+0.02*randn(length(t),1);

>> yreal=step(sysreal,t)+0.02*randn(length(t),1);

>> ysimul=step(1/(1+2*p),t);

>> plot(t,yreal,'bo',t,ysimul,'rx')

>> eps=yreel-ysimul;

>> J=1/length(eps)*eps'*eps;

After some iterations one obtain J 
minimal with tau=1.81 s

Better model with a delay, two
parameters to tune

Naive approach
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IV. Identification of discrete systems

Drawbacks :
� Test signals with high amplitude (is the system still linear ?)

� Reduced precision
� Perurbation noise not taken into account
� Perturbation  noise reduces the performance of the identification

� long, not very rigorous...

Advantage :
� easy to understand...

Naive approach
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IV. Identification of discrete systems

Second method (the good one) : « estimation »

� Perform a « rich test » (random input signal, rich in frequency)

� Fit the model that best predict the output.
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IV. Identification of discrete systems

Basic principle of parametric identification

Physical systemADC DAC

Numerical model

Parameters Adaptation
Algorithm

u(t) y(t)

ŷ(t)

ε(t)

Parameters of the model

perturbations
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IV. Identification of discrete systems

Example of an Identification Process

Linear model (ARX) :

euByA +⋅=⋅

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )te1ntub...1tubtub

1ntya...1tyatya1ty

bn21

an21

b

a

++−⋅++−⋅+⋅

=+−⋅++−⋅+⋅++

Model used as a predictor :

( ) ( ) ( ) ( )( )
( ) ( ) ( )

a

b

predict 1 2 n a

1 2 n b

y t 1 a y t a y t 1 ... a y t n 1

...............................b u t b u t 1 ... b u t n 1

+ = − ⋅ + ⋅ − + + ⋅ − + +

⋅ + ⋅ − + + ⋅ − +

� Try to minimize the difference between prediction and actual measurement.

White noise
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IV. Identification of discrete systems

errorpredictionmeasurements

JTotal

eps8yp8y8u8
eps7yp7y7u7
eps6yp6y6u6
eps5yp5y5u5
eps4yp4y4u4
eps3yp3y3u3

y2u2
y1u1

Example : orders na = 3 et nb = 2

( )
2ub1ub...............................

3ya2a1ya5yp

21

321

⋅+⋅
+⋅+⋅+⋅−=

5y5yp5eps −=

( )∑
=

=
N

1t

2
teps

N

1
J

Unknown : coefficients 
{a1, a2, a3, b1, b2}

Example of an Identification Process
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IV. Identification of discrete systems

Recursive Least Square Algorithm

� Possible since model is linear
� Possible since quadratic criteria
� Interesting because of the recursive version

( ) ( ) ( ) ( )( )
( ) ( ) ( )

a

b

predict 1 2 n a

1 2 n b

y t 1 a y t a y t 1 ... a y t n 1

...............................b u t b u t 1 ... b u t n 1

+ = − ⋅ + ⋅ − + + ⋅ − + +

⋅ + ⋅ − + + ⋅ − +

Prediction equation can be re-written :

( ) ( )T
predicty t t= θ ⋅φ

( ) [ ],...b,b,...a,atθ 2121
T =

( ) ( ) ( ) ( ) ( )[ ],...1tu,tu,...1ty,tytφ T −−−−=

Example of an Identification Process

Where :
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IV. Identification of discrete systems

Estimate θ taking into account the full set of measurements
� Obtained θ is optimal

Least Square Algorithm

( ) ( ) ( )( )∑
=

−φ⋅=θ
t

1i

1iiytFˆ

With :

( ) ( ) ( )( )∑
=

− −⋅−=
t

1i

T1 1iφ1iφtF
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IV. Identification of discrete systems

Estimate θ recursively for t = 0...N
�θ obtained after recursion is optimal

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

T

1 1 T

t t 1 F t t y t t 1 t

with :

F t F t 1 t t
− −

θ = θ − + ⋅ϕ ⋅ − θ − ⋅ϕ

= − + ϕ ⋅ϕ

Algorithm can be applied in real time
� parameters supervision

� diagnostis

� Algorithm can be improved with a forget factor : λ=0.95...0.99
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

T

1 1 T

t t 1 F t t y t t 1 t

with :

F t F t 1 t t
− −

θ = θ − + ⋅ϕ ⋅ − θ − ⋅ϕ

= λ ⋅ − + ϕ ⋅ϕ

Recursive Least Square (rls) Algorithm
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IV. Identification of discrete systems

Les algorithmes d’identification sont en général des variantes des moindres 
carrés récursifs

En tous cas ils ont tous, pour les algorithmes récursifs, la forme suivante :

Identification algorithms (general)

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )T11

T

tt1tFtF

avec

t1ttyttF1tt

ϕ⋅ϕ+−⋅λ=

ϕ⋅−θ−⋅ϕ⋅+−θ=θ

−−
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IV. Identification of discrete systems

1. Choice of a frequency sampling
� Not too big
� Not too small

� Adapted to the fastet expected dynamic (usually closed loop dynamic)

Identification method
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IV. Identification of discrete systems

2. Excitation signal
� Le signal doit être riche en fréquence
� Signal can (and must) be of small amplitude (a few %)

Example 1 : Pseudo Random Binary Signal

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

1.5

Matlab / System Identification Toolboxe

>> u=idinput(500,’prbs’ )

Example 2 : excitation 3-2-1-1 (airplane identification)
 3∆t 

2∆t 

∆t 

∆t 

Identification method
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IV. Identification of discrete systems

3. Test and measurements
� Choice of a setpoint

� Test
� Remove mean of measurements
� Remove absurd values

4. Model choice

� Example : ARX, degree of A and B

5. Apply algorithm
� Example : rls

6. Validate

� Validation criteria ?

Iterate

Identification method
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IV. Identification of discrete systems

1. The model must predict the output

Validation criteria

2. The model behavior must be the same than the original for perturbations

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )te1ntub...1tubtub

1ntya...1tyatya1ty

bn21

an21

b

a

++−⋅++−⋅+⋅

=+−⋅++−⋅+⋅++
The model :

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( )1ty...............

1ntub...1tubtub...............

1ntya...1tyatyate

1ty1tyte

bn21

an21est

estest

b

a

+−

+−⋅++−⋅+⋅−

+−⋅++−⋅+⋅=
+−+=

With the estimated model (ai, bi) one can estimate the error !

� Check that eest(t) is a white noise !
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IV. Identification of discrete systems

Use dedicated software

Example : Matlab / System Identification Toolboxe...
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IV. Identification of discrete systems

1. Import datas 2. Choose model 
and algorithm

3. Validate : 
prédiction

3. Validate, 
residuals
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IV. Identification of discrete systems

� Accelerate the identification process
Matlab licence = 3000 € + toolboxes licence...

� « homemade » toolboxes are used for dedicated applications

Use dedicated software
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IV. Identification of discrete systems

Non parametric identification

From input/output datas, estimate the transfer function :

� Input / output cross correlation
� FFT, Hamming window and tutti quanti

� Gain and phase, Bode diagram

From input / output datas, estimate the impulse response
� Apply RLS algorithm with nB big and nA = 0

� Allow for instance to quickly estimate the pure delay

V. Closed loop
systems
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V. Closed loop systems

Reminder

 

F1(z) 

E(z) 
S(z) U(z) 

P(z) 

– 

R(z) F2(z) 

F3(z) 

S(z) 

T(z) 

F4(z) 

 

F(z) 
e(z) s(z) u(z) 

p(z) 

– 

Equivalent !

Open loop transfer function : 
F = S.F1.F2.F3.T
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V. Closed loop systems

Closed loop transfer function

Open loop transfer function : 
F = S.F1.F2.F3.T

Closed loop transfer function : 

G = F(1+F)
G = B/(A+B)
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V. Closed loop systems

Static gain

As seen before :

∑∑

∑
=

=

=

=

=

=

++
=

ni

1i
i

mi

0i
i

mi

0i
i

0

ab1

b

G

Condition to have a unitary closed loop static gain (no static error) :

1

ab1

b

G
ni

1i
i

mi

0i
i

mi

0i
i

0 =
++

=

∑∑

∑
=

=

=

=

=

= ( ) ( )
( )

( )
( )z'A

zB

z1

1

ze

zs
zF

1
⋅

−
==

−�

Integrator
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V. Closed loop systems

Perturbation rejection

� Same condition on A(1) to perfectly reject the perturbations 
(integrator in the loop)

Perturbation-output transfer function

( ) ( )
( )

( )
( ) ( )11

1

yp
zBzA

zA

zp

zs
zS

−−

−

+
==

Generally the rejection perturbation condition is weaker : 
� |Syp(ej2πf)| < Smax for a subinterval of [0 0.5]
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V. Closed loop systems

Stability : poles

System is stable is the poles belong to the unit circle
� Compute closed loop transfer function

� Jury criteria (equivalent to Routh)

� Compute poles
� Draw the root locus

 

F(z) 

e(z) 
s(z) u(z) 

p(z) 

– 
K
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V. Closed loop systems

Example : root locus

 

F(z) 

e(z) 
s(z) u(z) 

p(z) 

– 
K

Root Locus

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.1π/T

0.2π/T

0.3π/T
0.4π/T0.5π/T0.6π/T

0.7π/T

0.8π/T

0.9π/T

π/T

0.1π/T

0.2π/T

0.3π/T

0.4π/T
0.5π/T

0.6π/T

0.7π/T

0.8π/T

0.9π/T

π/T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

System: sys
Gain: 0.0169
Pole: 0.564 + 0.281i
Damping: 0.706
Overshoot (%): 4.35
Frequency (rad/sec): 0.654System: sys

Gain: 0.0162
Pole: 0.196
Damping: 1

Overshoot (%): 0
Frequency (rad/sec): 1.63
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V. Closed loop systems

Stability : frequency criteria

Nyquist criteria : as in the continuous case

-1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

f=
0

f=
0.

5

(-
1,

0)
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V. Closed loop systems

Nyquist criteria

Margins :

- Module margin �∆M
- Gain module�∆G
- Phase module�∆P

 

(-1,0) 

∆P ∆M 

1/∆G 
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V. Closed loop systems

end C5 C6

VI. Control of 
sampled systems
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VI. Control of closed loop systems

Hypothesis

Requisites :

� Synchronous sampling
� Regular sampling
� Sampling time adapted to the desired closed loop performance
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VI. Control of closed loop systems

Introduction

If K is linear, the RST form is canonical :

 

F(z) 

e(t) 
s(t) u(t) 

p(t) 

– 
1/S 

R 

Tr(t)) 

– 

R, S et T are polynoms

Controller computes e(t) given r(t) and s(t) :

 

F(z) 
e(t) s(t) 

p(t) 

K(z) r(t)) 

– 
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VI. Control of closed loop systems

Discretization of a continuous controller

1. Process is modelled as a linear transfer function (Laplace)

� No need to know a sampled model of the system
2. Design of a continuous controller
3. Discretization of the continuous controller

� Many discretization methods
� Problem if Te too big (stability)
� Problem if Te too small (numerical round up)
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VI. Control of closed loop systems

Design of a discrete controller

1. System is known as a discrete transfer function (z-transform)

� Discxretizaiton of a continuous model + ZOH
� Direct identification

2. Design of a discrete controller

1. PID 1
2. PID 2
3. Pole placement

4. Independant tracking and regulation goals
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VI. Control of closed loop systems

PID 1

Continuous PID : ( )


















⋅+

⋅
+

⋅
+⋅=

s
N

T
1

sT

sT

1
1KsK

d

d

i
PID

Discretization (Euler) : ( )




















−⋅+

−⋅
+

−⋅
+⋅= −

−

−

e

1
d

e

1

d

e

1

i

PID

T

q1

N

T
1

T

q1
T

T

q1
T

1
1KqK
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VI. Control of closed loop systems

PID 1

After re-arranging :

( ) ( ) ( )



















⋅+
=










⋅+
⋅=










⋅+
⋅

+
⋅+

⋅+
⋅+

+⋅−=










⋅+
⋅

++⋅=

⋅+⋅−
⋅+⋅+

⋅=
−−

−−

ed

d'
1

ed

d
2

ed

d

ed

d

i

e

ed

d
1

ed

d

i

e
0

1'
1

1

2
2

1
10

PID

TNT

T
s

TNT

T
Kr

TNT

TN

TNT

T

T

T

TNT

T
1Kr

TNT

TN

T

T
1Kr

qs1q1

qrqrr
KqK

 

B/A 
s(t) 

– 

1/S 

R 

R 
r(t) 
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VI. Control of closed loop systems

PID 1

Closed loop transfer function is : :

CL
B R B R

H
A S B R P

⋅ ⋅= =
⋅ + ⋅

S as an integral teerm (the I of PID) :

( ) RB'Sz1ARBSAP 1 ⋅+⋅−⋅=⋅+⋅= −

Desired dynamics is given by the roots of P :

A,B,P � R S’

Small degrees : by hand

Large degrees : Bezout algorithm
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VI. Control of closed loop systems

PID 1

Main drawback : new zeros given by R at the denominator...
Solution : PID2
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VI. Control of closed loop systems

PID 2

 

B/A 
s(t) 

– 

1/S 

R 

R 
r(t) 

Starting from the already known PID1 :

R is replaced by R(1) :

( )CL
B

H R 1
P

= ⋅

Static gain is one, desired dynamic remains the same
� Same performances in rejection perturbation
� Better performance (smaller overshoot) in tracking
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VI. Control of closed loop systems

Pole placement

Can be seen as a more general PID 2 where degrees of R and S are 
not constrained.

( )
( )

( )
( ) ( )

A

A

B

B

d 1

OL 1

n1 1
1 n

n1 1 1 * 1
1 n

q B q
H

A q

A q 1 a q ... a q

B q b q ... b q q B q

− −

−

−− −

−− − − −

⋅
=

 = + ⋅ + + ⋅


= ⋅ + + ⋅ = ⋅

Tracking performance

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) P

P

d 1 1

CL 1

n1 1 1 d 1 1 1
1 n

q B q T q
H

P q

P q A q S q q B q R q 1 p q ... p q

− − −

−

−− − − − − − −

⋅ ⋅
=

= ⋅ + ⋅ ⋅ = + ⋅ + + ⋅

Regulation performance :
( ) ( )

( )1

11

yp
qP

qSqA
S −

−− ⋅=
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VI. Control of closed loop systems

Pole placement

P poles gives the closed loop dynamic :
� PD Dominant poles (second order, natural frequency, damping)
�PF auxiliary poles, faster

A,B,P � P : compute R and S

Static gain :
� S = (1-q-1).S’

Rejection of harmonic perturbation

� S = HS.S’ where |HS | is small at a given frequency

Remove sensibility to an given frequency :
� R = HR.R’ where | HR | is small at a given frequency
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VI. Control of closed loop systems

Pole placement

Perturbation rejection : choice of  R and S

PF.PD = (1-q-1).HS.S’.A + HR.R’.B

A.(1-q-1).HS B.HR    PF.PD � R’ and S’

Static gain :
� S = (1-q-1).S’

Rejection of harmonic perturbation
� S = HS.S’ where |HS | is small at a given frequency

Remove sensibility to an given frequency :
� R = HR.R’ where | HR | is small at a given frequency
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VI. Control of closed loop systems

Pole placement

Tracking : choice of T

T is replaced by the normalized factor :

B/A 
y(t) 

– 

1/S 

R 

T' 

y*(t) 

B*/A*  

r(t) 

1. T’ is chosen such as the transfer y*�y is as « transparent » as 
possible

2. B*/A* chosen such as r�y* as the desired dynamic
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VI. Control of closed loop systems

Pole placement

Tracking : choice of T’

( ) ( ) ( )
( )1

1d
11

yy qP

qBq
q'TqS * −

−−
−− ⋅=

( ) ( )
( )1B

qP
q'T

1
1

−
− =

With :

One obtain :

( ) ( )
( )1B

qB
qqS

1
d1

yy*

−
−− ⋅=
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VI. Control of closed loop systems

Placement de pôle

Tracking : choice of A* and B* :

� chosen according to tracking specifications
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VI. Control of closed loop systems

Independant tracking and perturbation rejection specifications

P chosen to cancel poles of B*

� B must be stable

Tracking : choice of T’

( ) ( ) ( )
( ) ( )1*1

1*1d
11

yy qBqP

qBqq
q'TqS * −−

−−−
−−

⋅
⋅⋅=

( ) ( )11 qPq'T −− =

With :

One obtain :

( ) ( )1d1
yy qqS *

+−− =


